Helios: A Modeling Language for Global Optimization and its Implementation in Newton
نویسندگان
چکیده
Helios is the first (to our knowledge) modeling language for global optimization using interval analysis. Helios makes it possible to state global optimization problems almost as in scientific papers and textbooks and is guaranteed to find all isolated solutions in constraint-solving problems and all global optima in optimization problems. Helios statements are compiled to Newton, a constraint logic programming language using constraint satisfaction and interval analysis techniques and their efficiency is comparable to direct programming in Newton. This paper presents the design of Helios, describes its theoretical foundation and semantic properties, sketches its implementation, reports some experimental results, and compares Helios to other modeling languages and direct programming in Newton.
منابع مشابه
Helios: a Mathematical Modeling Language for Newton Helios: a Mathematical Modeling Language for Newton
Numerous applications in science and engineering requires nonlinear constraint solving and optimization over real numbers. Helios is a mathematical modeling language designed to express these applications in a form close to traditional statements displayed in scientiic papers and textbooks. Helios is compiled into Newton, a constraint logic programming language over nonlinear constraints which ...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملOn the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 173 شماره
صفحات -
تاریخ انتشار 1997